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A note on the line profiles associated with mistakes. By A.J. C. Witson, Viriamu Jones Laboratory,

University College, Cardiff, Wales

(Received 23 September 1957)

Introduction

There is an outstanding discrepancy between theory and
experiment in connexion with the broadening of Debye-
Scherrer lines or the diffuseness of ‘single-crystal’ re-
flexions from crystals with mistakes. The line profile in
the former case, and the distribution of intensity in
reciprocal space in the latter, are effectively the Fourier
transforms of a function J (¢) or J(z, y, z), where J is the
mean value of the product FF* of the structure factors
of cells separated by a translation ¢ perpendicular to the
reflecting planes (for Debye-Scherrer lines) or =z, y, 2
within the crystal (‘single-crystal’ reflexions) (Wilson,
1949, chap. 7). Simple theory, based on the assumption
of mistakes at random, leads to an expression of the form

J(t) = Jyexp (—»lt]) (1)

where y may depend on the indices of reflexion 2, k, I;
there is a similar three-dimensional analogue for J (z,y,z).
This ‘Laplacian’ form of J (¢) has a characteristic cusp at
the origin, and falls off to zero rather rapidly with in-
creasing ¢{. On the other hand, experimentally derived
values of J(t) or J(z, y, z) are more closely represented
by a ‘Gaussian’ expression

J(t) = J, exp (—at?), (2)

which is smoothly rounded at the origin and falls to zero
much more rapidly with increasing ¢.

The ‘experimental’ values of J are in fact the result
of a rather complex Fourier analysis, in which the
recorded intensities of the broadened reflexions are ‘un-
folded’ with similar unbroadened reflexions (Stokes,
1948). Rounding of J near the origin would result from
the accumulation of experimental errors (photometry,
slit width, ete.), the use of a finite instead of an infinite
range of integration in the Fourier analysis (Eastabrook
& Wilson, 1952), and perhaps from estimating the back-
ground at too high a level. MacGillavry & Strijk (1946)
were content to attribute the non-Laplacian form of their
curves to such difficulties, but this attribution becomes
less plausible after the careful work of Edmunds & Hinde
(1952) on AuCu,;, and more particularly the work of
Steeple & Edmunds (1956) on CdMg,. The latter made
a special estimate of the possible distortion of a curve of
the Laplacian type (equation (1)) through experimental
difficulties and limited range of integration (they do not
specifically mention background estimation), and con-
cluded that the Gaussian shape was real, and not due to
distortion of a Laplacian.

It is therefore of interest to see whether a model in
which the mistakes do not occur at random would lead
to essentially different results. In order to avoid com-
plications, a layer structure will be considered, with mis-
takes in one direction only. As is well known, mistakes
at random lead to a distribution of domain sizes of the
type

p(e) = Lexp (—2e), (3)

where p(e)de is the probability of the domain size lying
within the range ¢ to (¢+de), and i is a parameter,

easily seen to be equal to the reciprocal of the mean
domain size. This distribution of domain sizes looks very
like the Laplacian expression for J(t), and one might
jump to the conclusion that a Gaussian distribution of
domain sizes would lead to a Gaussian expression for
J(t). Unfortunately the calculation of J(¢) from p(e) is
not so simple, and has been done explicitly for only one
other model, which may briefly be described as a ‘nuclea-
tion’ model instead of a ‘growth’ model. It will be shown
below that any distribution of domains must produce an
origin cusp in J(¢), but first the nucleation model will be
discussed briefly.

Nucleation model

There are two remarkable early papers by Landau
(1937) and Lifschitz (1937). Landau developed a growth
model of mistakes in a simple form, and Lifschitz gave
a general nucleation theory, including the growth model
as a special case. Both papers have suffered an un-
deserved neglect, particularly as they are written in
English. The writer first became acquainted with them
about 1944.

The model of mistakes at random is tacitly based on
crystallization (or structure transformation) starting at
one place and proceeding with occasional mistakes. If
structure transformation begins in many places (nuclea-
tion) and the nuclei grow until they meet, the junctions
between domains no longer occur at random, but part
way (halfway if all nuclei grow at the same rate) between
the random positions of the nuclei. The size distribution
of these elementary domains is easily found to be

p(e) = A% exp (—2Ae), 4)

where 1 is-still the reciprocal of the mean elementary
domain size. In general, however, there are only a few
different kinds of unit cell possible, and there is a high
probability (ranging from 1 in 2 for two kinds of cell
down to about 1 in 6) that adjacent elementary domains
will be physically indistinguishable, and hence to be
counted as one larger domain. The effect of this is to shift
the form of the distribution part way back from (4)
towards (3), with an increase in the average domain size.
Lifschitz obtained the general form of the domain-size
distribution function; it reduces to (3) if the nuclei are
very numerous and to (4) if the types of cell are very
numerous. He also determined line profiles for layer
structures of various types without explicitly evaluating
J@).

Initial slope of J(t)

Let us consider the contribution of a typical domain @
to J(¢), measuring ¢ in units of the interplanar spacing.
For ¢t = 0, F for each layer is multiplied by F* for the
same layer, and on the average each layer contributes

Js = (FF*) (5)

to J(0). For t = 1, F for each layer is multiplied by F*
for the adjacent layer. If the layers belong to the same
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domain the average contribution will be Js, as before,
but for the layer on the extreme right of each domain F
and F* belong to adjacent domains, and the average
contribution will be

Jo = (F'F*), (6)

where the prime indicates that F and F’ are the values
of the structure factors of adjacent domains. If the total
number of layers is IV and the number of domain bound-
aries is K,

J(1) = N7 [(N—K)}Js+KJd], (7)

it being assumed that N and K are so large that end
effects can be neglected. On rearranging and putting
K/N = 4, this becomes

J(l) = Js—}-(Js—Ja) . (8)

For ¢t = 2 the average contribution of each layer to
J(t) will be Js for the N—2K layers (approximately;
the approximation consists in neglecting single-layer
domains) for which F and F* belong to the same domain,
and J, for the 2K layers (approximately) for which they
belong to adjacent domains. The value of J(¢) is thus

J(2) ~ N7Y(N—2K)J+2KJ,] = Js—2A(Js—J4) , (9)
and, in general, for small ¢,
J({t) ~Js—tA(Js—Jq) . (10)

Now J; is positive, from its definition. J, is ordinarily
negative—in a simple case (Wilson, 1949, p.49) it is

Acta Cryst. (1958). 11, 228

SHORT COMMUNICATIONS

equal to —J; —but it cannot be greater in absolute
value than Js. For small ¢, therefore, J(¢) must decrease
linearly with |¢|, and thus has a cusp at the origin, like
the Laplacian form, whatever the distribution function
p(e). A similar argument for a cusp at the origin of J(2)
was given by MacGillavry & Strijk. The observed rounded
origin must therefore be attributed either to a defect in
the model of ordered domains separated by boundaries,
or to experimental errors. One of the latter not explicitly
discussed by Steeple & Edmunds (1956) is the estimation
of the background level.
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The scattering of 4 A neutrons by a beryllium crystal. By H.J.Hay, N.J. Parrenoen and P. A.
EGELSTAFF, Atomic Energy Research Establishment, Harwell, England

(Recetved 23 September 1957)

Analysis of the reflexions of X-rays from beryllium has
shown that the crystal has the hexagonal close-packed
lattice with ¢ — 3-58 A and a = 2-29 A (Gordon, 1949).
Measurements of the energies of Bragg-reflected neutrons
from a single beryllium crystal, used as monochromator
on a neutron spectrometer (Pattenden & Baston, 1957),
have shown appreciable intensities of low-energy neu-
trons which would not be expected if the crystal has the
above structure. There appear to be first-order reflexions
from (0001) and (1121) planes, members of a class of
planes which should have a zero atomic structure factor.
Quantitative agreement between three different crystals
suggested that the phenomenon might be a general
property of beryllium crystals.

In order to verify that the effect was genuine, the fol-
lowing decisive experiment was performed.

A beryllium crystal, 1} in.x 1} in.x} in., was placed
in a beryllium-filtered cold neutron beam containing a
negligible number of neutrons with wavelengths shorter
than 3-95 A (Egelstaff & Pease, 1954; Butterworth et al.,
1957). Any Bragg reflexion, if observed, could be due to
only the (0001) planes. Neutrons scattered through an
angle of 78° from the beam were counted, corresponding
to wavelengths of 4-26 A for (0001) and 2-13 A for (0002)

Bragg reflexions. The arrangement is shown in Fig. 1.
The results of a rocking-curve measurement are plotted
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Fig. 1. Experimental arrangement.

in Fig. 2, and show an (elastically) scattered peak super-
imposed on a background of (inelastically) scattered
neutrons. This interpretation was confirmed by placing a
polycrystalline beryllium block in front of the detector.



